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Abstract: Current evidence supports the use of probiotics in preterm neonates for prevention of
necrotizing enterocolitis, mortality and late onset sepsis. Despite the strong evidence, the uptake of
this intervention has not been universal due to concerns including probiotic sepsis, pro-inflammatory
response and transmission of antibiotic resistance. Critically ill extremely preterm neonates with
potentially compromised gut integrity are at higher risk of probiotic sepsis due to translocation.
In most countries, probiotics are sold as food supplements with poor quality control. The traditional
definition of probiotics as “live microorganisms” has been challenged as many experts have
questioned the importance of viability in the context of the beneficial effects of probiotics. Paraprobiotics
(ghost probiotics), are defined as non-viable microbial cells (intact or broken) or crude cell extracts
(i.e., with complex chemical composition), which, when administered (orally or topically) in adequate
amounts, confer a benefit on the human or animal consumer. Current evidence indicates that
paraprobiotics could be safe alternatives to probiotics in preterm neonates. High-quality pre-clinical
and clinical studies including adequately powered randomised controlled trials (RCTs) are warranted
in preterm neonates to explore this new frontier.
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1. Introduction

Despite the recent advances in technology and progress in research, necrotising enterocolitis
(NEC), mortality, late onset sepsis (LOS), and long-term neurodevelopmental impairment (NDI)
continue to remain a major health burden in preterm neonates [1,2]. NEC continues to be major
gastrointestinal emergency in ~7% of preterm very low birth weight (VLBW: Birth weight < 1500 g)
neonates. Mortality is high, up to 20 to 30%, with the highest rate among neonates requiring surgery [3–6].
The morbidity of definite (≥Stage II) NEC is significant and includes prolonged hospitalisation,
recurrent infections, long-term dependence on parenteral nutrition, and survival with intestinal failure,
and long-term NDI, especially in extremely low birth weight (ELBW: Birth weight < 1000 g) neonates
needing surgery for the illness [7]. Stey et al. have estimated the cost of treatment of one case of NEC
requiring surgery, close to $400,000 [8].

The World Health Organisation (WHO) defines probiotics as “live microorganisms which when
administered in adequate amounts confer a health benefit on the host.” [9]. Bacteria such as bifidobacteria,
and lactobacilli, and non-pathogenic fungi such as Saccharomyces, are the most common type of
microorganisms used as probiotics. The mechanisms for the benefits of probiotics include gut barrier
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enhancement, immune response modulation (e.g., TLR4 receptor, nuclear factor-B, inflammatory
cytokines), and competitive inhibition of gut colonisation by pathogens [10,11].

Systematic reviews of randomised controlled trials (RCTs) have shown that prophylactic
administration of enteral probiotics significantly reduces the risk of ≥Stage II NEC, mortality, LOS and
the time to full enteral feeding in preterm VLBW neonates [12,13]. Many developed countries including
Australia, Canada, Finland, Denmark, and Germany, are currently using probiotics as standard practice
for prevention of NEC in preterm VLBW neonates [14–18]. A systematic review of observational studies
has confirmed the benefits of enteral probiotics in preterm neonates [19].

Despite the various systematic reviews of RCTs and ‘before vs. after’ routine use studies
(Non-RCTs) reporting significant benefits of probiotics in reducing the risk of ≥Stage II NEC, LOS,
all-cause mortality, and feeding intolerance, the uptake of this intervention has been relatively slow,
and not universal. The reasons for this slow uptake include the concerns about probiotic sepsis,
development and transmission of antibiotic resistance, possibility of an exaggerated pro-inflammatory
response, and non-availability of or difficulties in accessing high quality, safe and effective products [20].
In most countries, probiotics are sold as food supplements with poor quality control. The death of
a preterm neonate from a contaminated probiotic product that was used in a large RCT by Jacobs et al.,
has highlighted the issue of poor quality control for probiotic products [21,22].

The risk of probiotic translocation and sepsis is higher; especially in critically ill and/or
extremely preterm neonates (e.g., suspected/proven sepsis or NEC) with potentially compromised gut
integrity [14,23–26]. Although none of the RCTs have reported probiotic sepsis, there are reports of the
administered probiotic causing serious infections such as septicemia, pneumonia and meningitis [24–29].
Kopp et al. reported that L. rhamnosus GG (LGG) supplementation during pregnancy and early infancy
did not reduce the incidence or severity of atopic dermatitis in children, but was associated with
an increased rate of recurrent episodes of wheezing bronchitis [30]. It is important to note that
probiotic strains may express virulence factors or acquire antibiotic resistance genes via horizontal gene
transfer [31]. However, advances in technology have allowed the removal of plasmid for antibiotic
resistance from maternal strain [32]. Zheng et al. have emphasised the importance of broader screening
of antibiotic resistance in commercially manufactured probiotic supplements. They recommend
techniques such as computational simulations, live imaging and functional genomics to study the
evolutionary behaviour, adaptations and dynamics of commercially manufactured probiotic for
optimising their safety [33].

2. Para-probiotics

Probiotic products contain a mix of live and dead cells; however, the population of dead cells
at any given time during the shelf life of such products is virtually unknown [34–36]. The dead cell
preparations from probiotics have been fractionated and various cellular components and metabolites
have been shown to produce a range of biological responses [34]. Taverniti et al. propose the term
‘paraprobiotic’ (ghost probiotics), to define non-viable microbial cells (intact or broken) or crude cell
extracts (i.e., with complex chemical composition), which, when administered (orally or topically) in
adequate amounts, confer a benefit on the human or animal consumer [37].

Several methods of inactivation of probiotics have been studied including the use of heat,
chemicals (e.g., formalin), gamma or ultraviolet rays, and sonication. Different methods of inactivation
may affect structural components of the cell differently, and influence its immunomodulatory
activity [37]. Heat treatment seems to be the method of choice for inactivation of probiotic strains in
majority of studies [37,38].

3. Mechanisms of Action of Para-probiotics

The mechanisms of action of heat-inactivated/killed probiotics are poorly understood. A variety
of biological responses have been reported after administering killed (mostly heat-killed) probiotics to
various mammalian and avian species [37]. Animal studies in gastrostomy-fed infant rats show that
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live and heat-killed L. rhamnosus GG decreases LPS-induced pro-inflammatory mediators and increases
anti-inflammatory mediators [39]. Bloise et al. reported similar results on human placental trophoblast
cells [40]. Studies in epithelial cells and in an infant formula-fed rodent model suggest that killed
microbes may be as effective as live microbes in modulating additional inflammatory stimuli [41,42].
Other potential mechanisms of action of killed/inactivated probiotics include adhesive properties of
BoPA a cell surface lipoprotein identified in Bifidobacterium (B.) bifidum and anti-inflammatory effects
of L. acidophilus and L. plantarum [37,43]. Other killed probiotics with beneficial immunomodulatory
responses in laboratory settings include L. rhamnosus GG, L. plantarum L-137, B. breve, Escherichia coli
Nissle 1917, B. bifidum, L. acidophilus, L. helveticus, B. bifidum and L. casei. [37]. Sakai et al. reported
that killed Enterococcus faecalis (EC-12) prevented vancomycin-resistant enterococci colonization in the
cecum of newly hatched chicks [44]. Reduced capacity for mucosal adhesion is a potential adverse effect
of heat inactivation of a probiotic strain. However, contrary to the expectation, strain P. freundereichii
has been shown to have an increased ability for adhesion after heat inactivation [45]. Reduced ability to
exert an anti-inflammatory effect after heat inactivation is another concern. However, heat-inactivated
strains L. casei strain Shirota or L. fermentum MS15 [46] have been shown to modulate inflammatory
response by regulating IL-10, human B-defensin and other pro-inflammatory cytokines and B. breve and
B. bifidum have improved ability to increase the secretion of IL-10, an anti-inflammatory cytokine [47].

Adams and Kataria et al. have also explored the field of non-viable versus viable probiotic
strains. Adams reviewed the ‘probiotic paradox’, and beneficial biological responses of live and dead
probiotic bacteria [34]. Enhanced safety and longer shelf life were considered as the advantages of ‘dead’
probiotic bacteria. Dead probiotics had various biological responses including anti-inflammatory
effects, attenuation of colitis, reduction of IL-8 production, stimulation of gut immune system,
and stimulation of IL-6 production, in pre-clinical studies [34]. Kataria et al. summarised the mechanisms
of action of “dead” probiotics or their components, and reported that dead microbes could modulate
anti-inflammatory effects as effectively as live probiotics [20].

4. Which Probiotic Species Can Be Used in Their Heat-Inactivated form as Para-probiotics?

The Lactobacillus and Bifidobacterium species are commonly used probiotics. Emerging evidence
indicates that strains of both Lactobacillus [45,48,49] and Bifidobacterium [50–54] species are capable of
beneficial effects in their heat-inactivated form. The case of B. breve M-16V is worth noting, as this
probiotic strain is being used routinely in preterm infants for prevention of NEC [55]. Sugahara et al.
have investigated the differences between live and heat-killed B. breve M-16V, in the regulation of
immune function, intestinal metabolism and intestinal gene expression using gnotobiotic mouse
model and omics approaches [50]. Both live and heat-killed forms of B. breve M-16V showed
immune-modulating effects that suppressed pro-inflammatory cytokine production in spleen cells
and affected intestinal metabolism. However, live strains exhibited more significant effects in the
regulation of intestinal metabolism and intestinal gene expression involved in nutrient metabolism [50].
Athalye-Jape et al. have reported a strain specific systematic review of RCTs and non-RCTs of B. breve
M-16V in preterm infants [55]. A total of 5 RCTs (n = 482) and 4 non-RCTs (n = 2496) were included.
Data from the 3 small RCTs (n = 386) reporting on clinically important outcomes was inadequate to
derive firm conclusions [18,56,57]. Meta-analysis of data from non-RCTs showed significant benefits
on LOS, mortality, and the postnatal age at full feeds. There were no B. breve M-16V related adverse
effects [55]. The findings reported by Sugahara et al., and Athalye-Jape et al. suggest that inactivated
B. breve M-16V may be a suitable paraprobiotic strain for assessment in clinical trials [50,55]. Research
on other paraprobiotics (developed from other probiotic strains that have been shown to be effective
in RCTs and/or non-RCTs) is important to study their safety and efficacy against placebo and/or
probiotics in preterm VLBW neonates.
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5. Clinical and Pre-Clinical Studies of Para-probiotics

Lahtinen has recently reviewed the pre-clinical and clinical studies on live versus inactivated
probiotics [35]. Clinical studies comparing non-viable versus viable probiotic strains for various
conditions (e.g., diarrhoea, irritable bowel syndrome, eradication of H. pylori, cow’s milk protein
intolerance) were few, and showed comparable, high or lower efficacy of non-viable versus viable
probiotics. Small sample sizes, lack of a placebo group, and use of non-standardised strains were
some of the limitations of these studies. Findings from various preclinical studies included the
following: (1) Viable and non-viable lactobacilli had equal ability for adherence to gut mucosa [58],
and heat-killing and protease treatments impaired the mucus adherent property [59]; (2) Heat-killing
changed the intestinal location of the bacteria. Live bacteria were seen in Peyer’s patches and lamina
propria whereas most heat-killed bacteria were in the lumen and cleared rapidly [60]; (3) Heat-killed
lactobacilli inhibited pathogen adhesion to the gut mucosa by competitive exclusion [61]; (4) Inactivated
lactobacilli enhanced gut epithelial barrier [62]; (5) Non-viable probiotic components such as cell wall
extracts [63], lipoteichoic acid [64], bacterial DNA [65,66], and surface (S)-layer proteins [67] can have
immunomodulatory effects by various mechanisms including increased salivary IgA production [68],
modulation of host T-cell responses [69] and gene expression [70]; (6) Live and inactivated probiotics
had comparable effects on innate immunity [71–73]; (7) Live as well as killed B. lactis HN019 enhanced
phagocytic responses in peripheral blood cells; however, only viable bacteria increased the phagocytic
activity of peritoneal cells [74]; (8) As for adaptive immunity, many studies favoured live over
non-viable bacteria [60,75–78], but some showed that both forms had similar effects on the phenotype
and functions of human myeloid dendritic cells [79]. Overall, the evidence from pre-clinical and clinical
studies suggested that “in some situations, depending on the mechanism of action, probiotic effects
are not dependent on cell viability”. The need for clinical studies and consideration of the differences
in the effects of dormant (during storage), inactivated and live bacteria was emphasised [80].

6. Systematic Review of Studies of Modified Probiotics for Prevention and Treatment of
Various Diseases

Zorzela et al. have reported a systematic review of trials of dead bacteria/yeasts (‘Modified
microbes’) inactivated by heating/sonication of probiotic strains, for prevention (n = 14) or treatment
(n = 26) of various diseases, mainly in adults and children [38]. The trials compared modified microbes
with either placebo (44%) or the same probiotic strain (39%) or standard treatment (17%). Compared
with probiotics, the modified microbes were not significantly more or less effective in 86% of prevention
and 69% of treatment trials. Meta-analysis of data from 5 RCTs showed significant benefits of modified
L. acidophilus (Standard mean difference: −0.81, 95% CI: −1.44, −0.17) as an adjuvant in treatment of
acute diarrhoea; however, there was significant heterogeneity (I2 = 86%). The incidence of adverse
events was comparable for modified microbes, probiotics and other controls but many trials did not
report adequate data on safety. Overall, there was some evidence that modified microbes may be
useful for few conditions. The limitations of this review include the heterogeneity of methodology and
the tested strains in the included studies and their small sample sizes [38].

In summary, current evidence indicates that paraprobiotics could be safe alternatives to probiotics
in preterm neonates. High quality pre-clinical as well as clinical studies including adequately powered
RCTs are warranted in preterm neonates to explore this new frontier. A cluster RCT design is
appropriate to avoid the issue of cross-contamination. A non-inferiority design will be acceptable for
this purpose. However, deciding the clinically acceptable margin of inferiority will be an important
issue considering the effect size for benefits of probiotics for NEC, all-cause mortality, late onset
sepsis, and time to full feeding in preterm infants. Considering that effects of probiotic strains are
‘strain-specific’, rigorous assessment of specific effects of different paraprobiotic strains are important.
This issue is also relevant when a mixture of strains is used. Assessment of the effects of added prebiotic
oligosaccharides is another important issue. Finally, the significance of the utility of paraprobiotics
beyond the preterm neonatal population cannot be ignored.
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